
«^*

LIBRARY

OF THE

MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

fjiilC'-; 1

TABLE OF CONTENTS

INTRODUCTION 1

THE BRANCH AND BOUND TECHNIQUE 3

FIXED ORDER ALGORITHM 6

Feasibility Tests 7

Determination of Bounds 7

Branching and Backtracking 9

Algorithm Termination 10

Flow Chart 10

Sample Problem 11

Decision Node Order 14

PARTITIONING ALGORITHM 16

Sample Problem 18

DECOMPOSITION 20

Combining Subproject Solutions 23

CONCLUSION 28

REFERENCES 29

679408

INTRODUCTION

Decision CPM has been proposed by Crowston and Thompson [2]

as a method for the simultaneous planning and scheduling of projects.

In conventional CPM analysis, decisions are made as to the specific

method for performing each task before the project is scheduled. However,

decision CPM allows the planner to include all reasonable alternative

methods of performing each job in the project graph, the alternatives

possibly having different costs, different time durations, and different

technological dependencies, and to then pick the best combination of job

alternatives in light of cost and due-date considerations. In addition,

interdependency between methods used to complete different tasks may

be included. Such alternative interdependencies may arise from a

requirement for consistency in the materials or designs used, for

example.

Crowston and Thompson show how Decision CPM networks can be

given a mathematical representation using integer variables. Crowston

also shows in [l] that all nondecision jobs (i.e., jobs for which there are

no alternatives) may be eliminated from the original network in a fashion

so that resulting "reduced network" is equivalent in the following sense:

Given a set of decisions, the resulting early start times for all decision

jobs in the reduced network will be the same as those in the original.

The optimal solution to the reduced network is thus optimal to the original.

- 1 -

1 •
".

The reduced problem is formulated as follows: associate with

each iob S-- in the network its cost C.., its early start time w... and an

integer variable d.. which takes the value 1 if the job is performed and

if it is not. The subscript "ij" indicates that a decision job is the jth

alternative for decision node i. A due date DD is assumed with a premium

of "r" dollars per time period of early completion and a penalty of "p"

dollars per time period of late completion. Then find D = { d. .} so as to

m.inimize the sum of job cost and due-date penalty or premium, that is:

N k(i) _ +
Min Z = 2 2 d.. C. - rw_ + pw^

j=l 3=1 J J

subject to:

Interdependency

(a) Mutually exclusive:

k(i)

S d,, = 1 1 = 1 N
j=l ^J

(b) Alternative: as required i.e.

d.. < d
13 - mn

d.. = d
13 mn

Precedence

- M(l - d..) + W..+ t... , < w,
, M="oo"

13' 13 i3kl - kl
'"

where S.. is an immediate predecessor of S, ,
13 kl

Project Completion

Wj, - Wp + Wp - DD = Wp. Wp >

- 2

where N is the number of decision nodes; k(i) is the number

of alternatives for decision node (i); t., , is the time required

from the start of the predecessor S.. to the start of its immediate

successor S, ,; and w^, is the early start time of project finish.

For the solution procedure to be described, that is Branch and

Bound, more general objective functions may be easily handled. For

example, rewards and penalties may be associated with the completion

of particular tasks in the project [l] . It is required, however, that Z be

nondecreasing with completion time. The algorithms described in this

paper are concerned with finding the optimal solution(s) in terms of Z.

The problem of finding the project cost curve (minimum cost for each

possible completion date) is only slightly more difficult and is discussed

in [9] .

THE BRANCH AND BOUND TECHNIQUE

The method of Branch and Bound has been adopted for the solution

of DCPM networks. Branch and Bound, otherwise known as Combina-

torial Programming or Controlled Enumeration, is an intelligently

structured search of the space of all possible solutions. The procedure

is based on two principal concepts: the use of a controlled enumeration

technique for (implicitly) considering all potential solutions, and the

elimination from explicit consideration of particular potential solutions

which are known from bounding or feasibility considerations to be

unacceptable. The technique has been applied to a variety of problems,

most of which require all or mixed integer solutions.

For a survey of Branch and Bound applications, see [6] .

The method as applied to this problem is illustrated by the tree

search diagram of Figure 1. The solution space is first partitioned into

the mutually exclusive collectively exhaustive subspaces of solutions

defined by the choice of one of the possible alternatives for decision node I.

Then each of these subspaces is further partitioned using another decision

node. If the process is continued through all decision nodes, every

solution satisfying the mutually exclusive interdependency conditions is

obtained. In Figure 1, the case where there are only two alternatives for

each decision node is illustrated, but the extension to the case where

there are k(i) alternatives for node i can be easily visualized.

A partial solution: p is a set of n decisions d / v- » 1—^ ^n a(m)j

m = 1, . . . , n where k is some bookkeeping label and a is

a vector of decision node labels i in some order. An

It
augmentation of p corresponds to the choice of a job

alternative for decision node a (n + 1) to be done in con-

k
iunction with pJ ^n

k' k ,

Pn+1 = Pn a(n+l)j-
I-

k' kA completion: p!X of p results from a series of augmenta-

tions such that a decision is made for each node. In Figure 1,

7
the labels have been chosen so that p„ ={d. . ; d„ . } is an

augmentation of Pg = {d, , ; dg , } . If N = 4, p. and p. are

3
two possible completions of p-.

It IS important to note that a partial solution p may define one

or more paths from start to finish in the "reduced network" of the project.

If so, a project completion date w is defined for the partial solution.

4 -

job

Figure 1. Branch and Bound Solution Tree.

Then w is a lower bound on the completion date which will result from

k k "
any completion of p . Similarly, the quantity C = S C. . d.. is a lower

n „ -J s,
ij jj

k
bound on the total job cost which will result from any completion of p .

Then

„k „k. k+ k-Z = C + pwp - rwp

is a lower bound on the objective function which will be obtained from any

completion of p .

Suppose some value Z* is the value Z for the best complete

k k
solution found thus far. Then if Z* < Z , p is bounded and need no

n

longer be considered. Furthermore, all completions of p may be

J,

discarded. Similarly, if p can be shown to be infeasible from alternative
"' n

interdependency considerations, then it and all of its possible completions

may be discarded.

The Branch and Bound technique is a procedure for generating

partial solutions by successive augmentations of the starting partial

solution p (no decisions). At each stage, the current partial solution is

checked to determine whether it is bounded or infeasible. If so, it is

discarded.along with its subspace of possible completions, and another

partial solution is considered. The process continues until the entire

solution space has been explicitly or implicitly considered. The best

feasible solution found at this point is optimal.

FIXED ORDER ALGORITHM

The algorithm described in this section is termed "fixed order"

because the order a in which decision nodes are processed is predetermined

and fixed. The essential features of the algorithm are presented in the

- 6 -

following order: feasibility tests, determination of bounds, branching

and backtracking, and algorithm termination. A flow chart and sample

problem solution follow, and then some considerations for choice of

effective order a are discussed.

Feasibility Tests

The programmed version of this algorithm is equipped to handle

pairwise interdependency constraints of the following types:

d..
13

V-.f1

representing the minimum total decision job cost which must be added to

the objective function.

Z = Z min (C..)+ SC. d.. + pwt, - rw"
I ij I] 13 ^ F F

3

This step tightens the cost portion of the lower bound for a partial solution

by incorporating the fact that a complete solution must include, at least,

the cost of the cheapest job alternative for each decision node not yet

considered. Since the algorithm works with reduced networks, the cost

of nondecision jobs is assunned to be zero. For real projects, this cost

must be added to the objective function, but it is fixed cost and has no

effect upon the workings of the algorithm.

The "completion time" portion of the bound is determined by a

standard forward pass through the network defined by the partial solution.

This is accomplished in the programmed version of the algorithm by

setting d.. = for all decision jobs not selected by the partial solution,

and then conducting the forward pass calculations over only those time

constraints for which the d.. for both predecessor and successor are

positive. The method does not require distinguishing between those

decision jobs which have not been selected because they have not yet

been considered for the current partial solution, and those rejected in

favor of another alternative job. The artificial start and finish jobs are

assumed to have been selected by all solutions.

There are many cases in which the completion time portion of the

bound for a partial solution p could be strengthened by taking into account

decisions which must be made for decision nodes a(m), m > n. For

example, in Figure 2 it can be seen that a choice of S, . implies a lower

- 8 -

bound on completion time of six days, even though no path exists through

the network until a decision is made for decision node 2. The algorithm

does not recognize such cases; artificial nondecision jobs may be

inserted in the network to represent these and more complicated situations,

however.

4

Decision node /\
Precedences

Decision job ()

Artificial job ^ ,

Figure 2

Branching and Backtracking

An "iteration" for this algorithm refers to the process of picking

some partial solution p for further elaboration, and then generating and

evaluating each of the possible augmentations p U d.., j = 1, . . . k(i)

where i = Qf(n + 1). The rule used to determine which of all active

(feasible and unbounded) solutions to consider for the next interation is

the following: choose the partial solution p which has the lowest value

Z from the set of all active solutions most nearly complete. This rule

is used for both "branching" (i.e., proceeding down the solution tree)

and "backtracking" (i.e. , proceeding back up the tree when the current

partial solution is completed or discarded). It can be seen that this

procedure amounts to picking the most promising of the most recently

- 9

generated active partial solutions and shall be referred to as a LIFO

strategy. The LIFO strategy was adopted primarily because it tends to

minimize computer storage requirements. The strategy is implemented

by the maintenance of a pushdown list, y , of solution labels k.

Algorithm Termination

The algorithm will terminate when all possible solutions have

been considered explicitly or implicitly. Since there are a finite number

of solutions, termination is guaranteed. The partitioning procedure is

such that the entire space of potentially optinaal solutions is spanned by

the set of active partial and complete solutions. When the number of

complete solutions which have the lowest Z value = Z* is equal to the

number of active solutions, the algorithm terminates.

Flow Chart

The complete fixed order algorithm operates as follows after a

is specified:

Step I: Z* = 00

y = {1}

p^ = (0). Z^ =

If

Step 2: K = >(1); current solution is p .

If Z*' > Z*, go to Step 6.

If Z^ < Z *
, go to Step 3 if n < N;

Step 5 if n = N.

Step 3: I = a(n + 1)

- 10 -

step 4: Evaluate each of the augmentations p U d.

.

3 = 1, k(i) by testing each for:

a. feasible?

b. Z^' < Z* ?

Save the solutions which pass these tests, and

insert the new labels k' at the top of the list 7

k'
in order of nondecreaslng Z . If there are no

unbounded feasible solutions, go to Step 6;

otherwise go to Step 2.

Step 5: Z* = Z; revise 7 by putting 7(1) at the end

and moving all other elements up one position.

Go to Step 7.

Step 6: Delete 7(1) from 7 and move all other elements

up one position.

Step 7: Finished? If not, go to Step 2.

Sample Problem

Suppose the decision node order 0= 3, 4, 1, 2. 5 is specified

the sample problem of Figure 3. Then the solution is as follows:

(1) Z* = 00

y = {1}

Po\ - (0)

(2) k = 1; current solution is p

(3) i = 3

(4) pj = (dg
j)
Wp = 5 C^ = $15 Z^ = -$5

Pi " ^^3 2^ "^F " ^ ^^ " ^° ^^ '^ ^^^

7 = {1, 2} Z* = 00

11 -

cost

time

DD = 6 days

r = $20

p = $40

Alternative Interdependency d„ . = d . .

Figure 3. Sample Problem.

12

In the next iteration, solutions {d„ i : d . „) ^"^ (^3 i'^4 3) are found

to be infeasible. At the end of Step 4:

'2 = ^^3,1' ^4,1> 4 = 5 C^ = ^^5

2
Pi {d3 2}

w^ = 6 c2=$0

Z^ = $45

zr = $40

{1.2} Z* = oc

The process continues until the only active solution is

P5 = ^^3.1= ^4.1= ^2= ^2,2= ^5,2^ "^F ^^

C =

Z =

$45

$2 5

The solution tree is shown in Figure 4.

©(5.$15,-$5)

(5,$45.$25L
^4.1^ (4,2

I

4.3]

I

(5, $55, $35H(5, $45, $25)

1, (1^

(5, $65. $45) 1(5, $45. $25)

2,1) (2.2)

(5, $75. $55) 1(5, $45, $25)

5,1) (Q
Optimal

(w , c. Z)

016,0.0)

(7, $5, $45) I (8. $0, $80)

(4,2^ (Cs)

I = infeasible

B = bounded

Figure 4,

13

Decision Node Order

Preliminary experimentation with the fixed order algorithm showed

that solution time for a given problem was extremely sensitive to the order

of decision nodes a. The major portion of this variability in solution

time seemed to be concentrated in the time to prove optimality once the

optimal solution had been found. It was further observed that solution

time was minimized by those decision node orderings in which "critical"

nodes (i.e. , those nodes for which the chosen decision job in the optimal

solution was on the critical path(s)) were processed first. With such

orderings, strong w,., bounds were generated near the top of the solution

tree, and the tree was consequently more effectively pruned.

In order to obtain a measure of the potential criticality of decision

nodes, the following simple heuristic was devised: For each decision

node choose the cheapest alternative. In the resulting network, calculate

the total slack for each job. For a job not chosen, the calculated slack is

that which would occur if the job were performed, but with the start times

for the chosen jobs unaltered. In some cases, this implies negative slack.

, , 2
Choose the decision node order a on the basis of increasing mm slack.

J

This ordering will be referred to as "slack order.
"

2
This rule should perhaps be modified somewhat. Since the total slack
calculated in this fashion is not particularly meaningful for those
decision nodes not on the original critical path, it may be better to order
these nodes so that they are grouped technologically. This gets more
directly at the problem of ensuring that paths through the network are
defined by successive decision nodes. The groups of nodes can be
ordered on the basis of slack for the group. However, this is not a

simple rule to apply for complex networks and has not been tested.

- 14 -

The algorithm was programmed in Fortran IV for an IBM 7094

computer and run under the time-sharing system of MIT's project MAC.

The program was tested on variations of two fifteen-node, three-

15
decisions-per-node (3 possible solutions) problems. The two problem

types, hereafter referred to as Type 1 and Type 2 problems, differed in

the extent to which interconnections between opposite portions of the

network existed. Type 2 problems contain many such interconnections,

so that a number of competing critical paths were likely to develop.

Typically, nine to eleven of the decision nodes in the problem became

critical for some partial solution. Variety was provided to these problems

by altering due dates, premiums, penalties, and times for precedence

constraints (t ,^,). Solution times are reported in Table 1, and do not

include the three to five seconds required for input-output and initializa-

tion.

Results for the fixed order algorithm are shown for both slack

order and technological order. Technological order offers some compu-

k
tational efficiencies in determining^ but is essentially a random order

with regard to potential criticality, and results have been included

primarily for the basis of comparison. In all cases, slack order has

proven to be superior to technological order.

It has been proposed that decision nodes involved in alternative

interdependency constraints should be placed at the top of the decision tree

so as to allow effective pruning on the basis of feasibility considerations.

This, however, may interfere with a pure slack order, and results with a

few test problems indicate that slack order should dominate.

15

Table 1. Comparison of Solution Times.

« i
\

1^
other completions of p need not be evaluated. The partitioning algorithm

incorporates this consideration as follows:

Partition the decision nodes of a problem into two sets: B, the

Branch and Bound set; and Q, the cheapest alternative set. Let b be the

number of members in B. Solve the decision network defined by B with

the fixed order algorithm. Each time a "complete" unbounded solution

k k ' k k k

'

k
p, to B is obtained, test fC "^

Pv, U Q, to determine if w = w . If not,

transfer those decision nodes in Q which are critical into the set B and

continue. Note that once a decision node enters B it remains there.

A simple version of the partitioning algorithm has been programmed

in which all decision nodes Involved in alternative interdependency

k
constraints are placed in B. Then Q, is simply the set of decisions

d. .
= 1 such that C.'. = 0, i = Q?(m), m = n + 1 N and if w^ = w^,

J i-J r r
k' kZ = Z . More sophisticated versions of the partitioning algorithm can

be envisioned in which the problem of determining Q, is solved for the

cases in which alternative interdependency constraints do affect the

elements of Q. In many cases this may not be difficult. For the case in

which it is possible to order decision nodes so that alternative inter-

dependency constraints affect only successive nodes, the problem can be

given a network interpretation and solved as a shortest-route problem. [l]

The partitioning algorithm is equivalent to the fixed order algorithm

with the following amendment:

t
Step 2: K = 7 (1); current solution is p .

If Z^ > Z* , go to Step 6. If Z^ < Z* , go to Step 3

if n < b; Step 2A if n = b; and Step 5 if n = N.

- 17

step 2A: Determine Q^; p!^ = p^ Q*^, andZ*^'

k

'

k

'

k k
Step 2B: If w of p^ = w of p, , go to Step 5 with p^.

If not, go to Step 2C.

k'
Step 2C: Determine critical path for pIX . Place those

nodes in Q which are critical into B. Go to

Step 2.

Sample Problem

For the sample problem of Figure 3, decision nodes 3 and 4 are

involved in alternative interdependency constraints, so a= {3, 4, 1, 2, 5 }

and b = 2. As before, at the end of two interations through Step 7:

P2 = {dg
J

; ^4 j} w^ = 5 C^ =$45 Z^ = $45

Pi= td3,2};

D /^F'^'^^

(6,$0.$0)

^7, $5, $45)1(8. $0, $30)

©

,(5, $45, $25)

Figure 5.

Solution times for the partitioning algorithm are also shown in

Table 1. In all cases, the algorithm performs better than the fixed

order algorithm. The gains are slight for Type 1 problems because b,

the size of the Branch and Bound set, grows to a large fraction of N (9/15

to 11/15). For Type 2 problems, improvements are of the order of 40

to 50 percent, for here b = 3 to 8. Although the major improvements

shown occur for problems which are already easily solved, the

partitioning algorithm may offer the potential for solving problems with

very large N if b remains small.

19

i :

Solution time for fixed N and k(i) is seen to be highly variable. It

has been found that most of this variability can be explained by the final

value of b, which is the measure of the number of nodes that become

critical for some solution. The relation /nt = a,. + a,b, where t is

computer solution time, was fitted to the problems of Table 1 with the

following results.

Int = 0.72 + 0.47b
t statistic (3.02) (14.8)

F(l. 8) = 218.2 R^ = 0.96

F(l, 8)q qj
= 11.26 n = 10

Although there was a significant relationship between these variables, it

is not possible to predict computation time since b only becomes known

during computation.

DECOM POSITION

A large project may simply be a collection of relatively independent

subprojects. If so, it may be possible to decompose the large networks

into smaller subnetworks, "solve" the subnetworks, and then fit the

subnetwork solutions together. In view of the exponential growth effect

in solution time, it may be faster to solve a number of small problems in

less time than to solve one large one. The idea is analogous to the

3
decomposition principle for linear programming and is related to the

decomposition technique described by Parikh and Jewell in [7] for the

time-cost tradeoff models of Kelly [4] and Fulkerson [5] .

See, for example, Ch.22 and Ch.23 in Dantzig [3]

- 20

A subproject is a collection of decision nodes in a reduced network

which, taken together, "look like" a project. The collection must have a

single starting point and a single finish. There can be no interdependency

or precedence constraint between any node within the subproject and a node

which is outside the subproject. The starting point may, however, be the

successor of any number of jobs outside the subproject, and the finish may

similarly be a predecessor of any number of jobs.

The enclosed portions of the network A of Figure 6 qualify as

subprojects. The network is redrawn as in 6B with artificial start jobs

(S', S") of zero cost and time inserted, as well as artificial finish points

(F', F"). In Figure 6 the following is true:

(1) Every immediate successor of a subproject start

variable is contained by the subproject boundary.

(2) Every immediate predecessor of a subproject finish

variable is contained by the subproject boundary.

(3) For each subproject variable which is neither subproject

start nor subproject finish, all immediate predecessors

and successors are contained by the boundary.

An algorithm related to the network reduction routine of [1] has been

developed to generate all legitimate subnetworks.

21 -

Figure 6. Decomposition of Project Networks

22 -

Combining Subproject Solutions

Due to the interaction between subprojects and the rest of the

project network, it is generally not possible to solve for a single solution

in each subproject and then simply to use these solutions to obtain an

overall project optimum. A subproject does not have, in general, its own

objective function. Rather, the objective function is concerned with the

entire project completion date; and the effect of a subproject solution

upon that date is not known until decisions are made for all other parts of

the network. Consequently, some other method of fitting subproject

solutions together in order to obtain the overall project optimum is needed.

The approach is based upon the observation that the set of all

feasible solutions to a subproject has all of the characteristics of a

decision node. Associated with each solution is a cost and a performance

time, and each solution has a predecessor and a successor. In addition,

only one solution may be chosen from the subproject -- i.e. , the set of

subproject solutions is subject to a mutually exclusive interdependency

constraint.

Since each solution to a subproject has the same predecessor and

successor (e.g., S' and F'), it is clear that the project optimal solution

will never contain a subproject solution which is both longer and more

expensive than some other feasible solution to the same subproject. The

former subproject solution is "dominated" by the latter. In the case

-23-

where a subproject solution is less expensive than some shorter solution,

the shorter solution is dominated if

C^ - C^ + (w^ - w^) (max(p,r)) >

11 2 2
where C and w^, refer to the longer subproject solution, C and w— to

the shorter, and p and r are the overall project penalty and premium.

In order to obtain the optimal solution to the overall project, it is

necessary to consider only all undominated solutions to each subproject.

If all undominated solutions for a subproject have been obtained, the entire

subproject can be replaced by a single decision node containing those

solutions as its job alternatives. In the resulting master problem, there

will be fewer decision nodes and fewer constraints. The master problem

may then be solved with any of the Branch and Bound routines discussed

In previous sections. Hopefully, the reduction in solution time for the

master problem will be far greater than the time required to generate

undominated solutions to the subprojects. The crucial issues as to the

feasibility of this approach are: (1) the time required to generate all

\indominated solutions, and (2) the degree to which the space of all

possible subproject solutions is reduced by dominance considerations.

The algorithm for determining all xindominated solutions is a

modified partitioning algorithm. Instead of a single Z* , there now

exists a Z*(t) for every subproject completion time (t). Initially, Z*(t) = -»

for all t.

Obtain a first complete solution with cost C and completion time

(f). Then,

-24-

Z*(t) = C for all t > t'

Z*(t) = C +[max (p.r)](t' - t) forallt<t'

When the next complete subproject solution is obtained, the same calcula-

tion is made for all t. Z*(t) is then equal to minimum of its current

value and the new calculated value.

This algorithm was tested on the same sample of problems for

which solution times are given in Table 1. It was found that only a small

number of feasible undominated solutions were obtained (25 or less). This

is to be expected -- there can be no more undominated solutions than the

number of days separating the cheapest feasible solution and the shortest.

More surprising is that the total amount of time required to generate all

undominated solutions is in all cases less than three times the amount of

time required to find the optimal solution(s). The conclusion that the

determination of all undominated solutions will generally be at the same

order of magnitude of difficulty as that of determining the optimal

solution may be warranted. The partitioning algorithm, in searching for

the optimal solution, is likely to generate a number of complete solutions

which it eventually determines to be bounded; but these same solutions

may be undominated and thus found by the undominated solution algorithm

with very little additional effort.

To demonstrate the power of the decomposition approach, two

networks were chosen (shown schematically in Figure 7). The master

problem for Network I includes the undominated solutions from subprojects

A, B, and C The master problem of Network II includes the portion of

the network A (not a subproject) and the undominated solutions from

subprojects B and C.

-25-

A
13 Nodes

Specialized techniques for solving the master problem may be

incorporated in a fully automated decomposition algorithm. For

example it may turn out that a subproject may always remain in the

cheapest alternative set Q, in which case it is unnecessary to gener-

ate all undominated solutions for that subproject. Also, since the

predecessor-successor relationships for all undominated solutions

to a subproject are identical, the minimum time solution from each

subproject may be used to strengthen the w bound in the master.

There are cases in which portions of a project network do not

satisfy the strict requirements for designation as a subproject, but in

which overall project optimum will be found by treating these portions as

subprojects. Such will be the case when the precedence-successor

relationships which violate the subproject requirement are not on the

critical path in the optimal solution. Or they may be on the critical path,

but the undominated solutions generated in the subproject may be undomi-

nated regardless of the existence of the critical links. Similarly, an

alternative interdependency constraint may cross the boundary but have

no effect on the optimal solution, or upon the imdominated solutions

generated by ignoring its existence. The case of the noncritical predecessor-

successor link may often be easily seen ahead of time, so that the decompo-

sition may proceed with an optimal solution guaranteed. In other cases

the size of entire projects may be such that "illegal" decomposition may be

resorted to in an effort to find a good, and hopefully optimal, solution.

Also, since it is true that all alternatives of a decision node need not

have identical predecessor and successor relations, it is conceivable

that algorithms could be developed for reducing a segment of a network

-27-

to a decision node even though the segment does not meet the conditions

of an "independent subproject."

CONCLUSION

Experimentation with the algorithms discussed in this paper

shows that problem- solving time was strongly affected by the order in

which the decision nodes were examined. Solution time was miniraized

by examining decision nodes in order of increasing "criticalness.

'

The partitioning algorithm gave the lowest times for each problem

tested. Its efficiency results from the fact that it tests each unbounded

partial solution to a problem to see if the cheapest alternative for each

decision node not included in the partial solution can be included without

extending the project length. If this is the case, then all other completions

of the partial solution need not be evaluated. The feasibility of the

decomposition of large project networks was also examined. Independent

subnetworks were defined within a large network and these were solved

for all undominated solutions by an extension of the Partitioning Algorithm.

The set of undominated solutions can then be regarded as a simple decision

node within the large network and the resulting problem is solved by the

partitioning algorithm described above. The improvement in solution

time achieved by this decomposition was substantial.

-28-

REFERENCES

[l] Crowston, W. G., "Decision Network Planning Models",

Management Science Research Report No.lSB, Graduate School

of Industrial Administration, Carnegie-Mellon U. , 1968.

[2] Crowston. W. B. , and G. L. Thompson, "Decision CPM: A

Method of Simultaneous Planning, Scheduling, and Control of

Projects", Operations Research , Vol.15, No. 3, May- June

1967.

[3] Dantzig, G. E., Linear Programming and Extensions , Princeton

University Press, Princeton, N.J., 1963, Chapters 22, 23.

[4] Fulkerson, D. R., "A Network Flow Computation for Project

Activity Scheduling", Management Science , Vol. 7, 1961.

[5] Kelley, J. E., Jr., "Critical Path Planning and Scheduling:

Mathematical Basis", Operations Research, Vol.7, No. 3,

1961.

[6] Lawler, E. L., and D. E. Wood, "Branch and Bound Methods:

A Survey", Operations Research, Vol. 14, No. 4, 1966.

[7] Parikh, S. C, and W. S. Jewell, "Decomposition of Project

Networks", Management Science , January 1965.

[8] Pierce, J. F., and D. J. Hatfield, "Production Sequencing by

Combinatorial Programming", Operations Research and the

Design of Management Information Systems (J. F. Pierce, Editor),

Technical Association of the Pulp and Paper Industry, New York,

1967, p. 177.

-29-

REFERENCES (Cont.)

[9] Wagner, M. H., "Solution of Decision CPM Networks".

S.M. Thesis, Massachusetts Institute of Technology, June 1968.

-30-

f

...^,:^MM^ , MMSEfvlENTf
Date Due

t'P^
\r"^

2 19810

JUL 12 1^85

:'i\

APR 3 1^90

2

Lib-26-67

lllllliinllinliHiMi

-lO"^^

3 TD60 D03 a7M b55 ^^-Iff^

MIT LIBRARIES

I
P>i| i|i|ip IIP !|iii||iii |i'ii||iiiii

3 TDflD QD 3 fl7M m,s

%

mm

"-*7i

